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Model

(Ω,F ,P) equipped with the filtration F = (Ft )
T
t=0 such that

FT = F
risky asset S = (St )

T
t=0 = (S1

t , . . . ,S
d
t )T

t=0 - d-dimensional
process adapted to F
risk free asset B = (Bt )

T
t=0, Bt ≡ 1 for all t = 0, . . . ,T

trading strategy H = (Ht )
T
t=1 = (H1

t , . . . ,H
d
t )T

t=1-predictable with
respect to F
Let us denote the set of all strategies as P.
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Short selling

Define P+ = {H ∈ P | H ≥ 0}.
λ = (λ1, . . . , λd ), µ = (µ1, . . . , µd ) where 0 < λi , µi < 1
λ < µ if and only if λi < µi for i = 1, . . . ,d
Let ϕ := (ϕ1, . . . , ϕd ) where ϕi (x) := x + λix+ + µix−

Denote

(H · S)t :=
t∑

j=1

Hj ·∆Sj
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gain or loss process

GLP is a process x = (xλ,µt )T
t=1 of the form

xλ,µt := xλ,µt (H) = −
t∑

j=1

ϕ(∆Hj ) · Sj−1 − ϕ(−Ht ) · St =

= −
t∑

j=1

d∑
i=1

ϕi (∆H i
j )S

i
j−1 −

d∑
i=1

ϕi (−H i
t )S

i
t

where ∆H i
1 = H i

1.

Substituting ϕ we get

xλ,µt = (H · S)t −
t∑

j=1

λ(∆Hj )
+Sj−1 −

t∑
j=1

µ(∆Hj )
−Sj−1 − µHtSt .

(U. Çetin, L.C.G. Rogers, "Modelling liquidity effects in discrete time")
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The set of hedgeable claims

Let us define R+
T (λ, µ) := {xλ,µT (H) | H ∈ P+} and the set of

hedgeable claims as follows

A+
T (λ, µ) := R+

T (λ, µ)− L0
+.

Denote A+
T (λ, µ) the closure of A+

T (λ, µ) in probability.

Remark

A+
T (λ, µ) is a convex cone.
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absence of arbitrage

Definition (NA+)

We say that there is no arbitrage in the market if and only if

R+
T ∩ L0

+ = {0}.

(NA+) is equivalent to the condition A+
T ∩ L0

+ = {0}.

Now we give the
definition of robust no arbitrage

Definition (rNA+)

We say that there is robust no arbitrage in the market if and only if

∃ ε > 0 : (ε < λ, A+
T (ε, µ)∩ L0

+ = {0}) or (ε < µ, A+
T (λ, ε)∩ L0

+ = {0}).

(W. Schachermayer "The Fundamental Theorem of Asset Pricing
under Proportional Transaction Costs in Finite Discrete Time" )
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(λ, µ)-consistent price system

Definition (λ, µ)-CPS

We say that a pair (S̃,Q) is (λ, µ)-consistent price system when Q is
a probability measure equivalent to P and S̃ = (S̃t )

T
t=0 is an

d-dimensional process, adapted to the filtration F which is
Q-martingale and the following inequalities are satisfied

1− µi ≤
S̃i

t

Si
t
≤ 1 + λi , P-a.s.

for all i = 1, . . . ,d and t = 0, . . . ,T .

(P. Guasoni, M. Rásonyi, W. Schachermayer "The fundamental
theorem of asset pricing for continuous processes under small
transaction costs" )
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(λ, µ)-supermartingale consistent price system

Definition (λ, µ)-supCPS

We say that a pair (S̃,Q) is (λ, µ)-supermartingale consistent price
system when Q is a probability measure equivalent to P and
S̃ = (S̃t )

T
t=0 is an d-dimensional process, adapted to the filtration F

which is Q-supermartingale and the following inequalities are satisfied

1− µi ≤
S̃i

t

Si
t
≤ 1 + λi , P-a.s.

for all i = 1, . . . ,d and t = 0, . . . ,T .
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right-sided λ-consistent price system

Definition λ-CPS+

We say that a pair (S̃,Q) is right-sided λ-consistent price system
when Q is a probability measure equivalent to P and S̃ = (S̃t )

T
t=0 is an

d-dimensional strictly positive process, adapted to the filtration F
which is Q-martingale and the following inequalities are satisfied

S̃i
t

Si
t
≤ 1 + λi , P-a.s.

for all i = 1, . . . ,d and t = 0, . . . ,T .
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Necessary conditions for the absence of arbitrage

Main theorem
The implications (a)⇒(b)⇒ (c)⇒ (d) are satisfied where:
(a) A+

T (λ, µ) ∩ L0
+ = {0} (NA+);

(b) A+
T (λ, µ) ∩ L0

+ = {0} and for any ε > λ : A+
T (ε, µ) = A+

T (ε, µ);
(c) for any ε > λ : A+

T (ε, µ) ∩ L0
+ = {0};

(d) for any ε > λ there exists ε-CPS+ (S̃,Q) with dQ
dP ∈ L∞.
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Necessary conditions for the absence of arbitrage

Corollary

The implications (a)⇒(b)⇒ (c)⇒ (d) are satisfied where:
(a) A+

T (λ, µ) ∩ L0
+ = {0}; (NA+)

(b) A+
T (λ, µ) ∩ L0

+ = {0} and for any ε > µ : A+
T (λ, ε) = A+

T (λ, ε);
(c) for any ε > µ : A+

T (λ, ε) ∩ L0
+ = {0};

(d) for any ε > µ there exists λ-CPS+ (S̃,Q) with dQ
dP ∈ L∞.

Main corollary

(rNA+) ⇒ ∃ λ-CPS+.
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Example

The existence of λ-CPS+ is not a sufficient condition for (NA+).
Let T = 2, d = 1, λ = µ < 1

3 and S0 = 1, S1 = 1 + 11A, S2 = 1+λ
1−λ

where A ∈ F1 and 0 < P(A) < 1. Furthermore, assume that
F0 = {∅,Ω}, F1 = {∅,A,Ω \ A,Ω}.
Notice that there exists λ-CPS+ in the model. Define
S̃t := (1− µ)EQ(S2|Ft ) where Q ∼ P and t ∈ {0,1,2}. The
measure Q can be any probability measure equivalent to P due
to the fact that

(1− λ)EQ(S2|F1) = (1− λ)EQ(S2|F0) = 1 + λ.

On the other hand notice that there exists an arbitrage in the
model. Define a strategy as follows ∆H1 = H1 = 1 and
∆H2 = −11A. Then

xλ,µ2 = −1−λ+(2−2λ)11A +(
1 + λ

1− λ
−λ1 + λ

1− λ
)11Ω\A = (1−3λ)11A.

Finally A+
2 (λ) ∩ L0

+(F2) 6= {0} despite of existing λ-CPS+.
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Sufficient condition for the absence of arbitrage

Theorem

Let the pair (S̃,Q) will be (λ, µ)-supCPS. Then we have the absence
of arbitrage in our model, i.e. A+

T (λ, µ) ∩ L0
+ = {0}.

Proof.

Let ξ ∈ A+
T (λ, µ) ∩ L0

+, i.e. 0 ≤ ξ ≤

≤ −
T∑

t=1

∆HtSt−1+(1−µ)HT ST−
T∑

t=1

λ(∆Ht )
+St−1−

T∑
t=1

µ(∆Ht )
−St−1.

We use the inequalities −µiSi
t ≤ S̃i

t − Si
t ≤ λiSi

t , P-a.s. and show that
EQ(H · S̃)T ≤ 0.
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Implications

Actually due to the above theorem and the previous example the
existence of λ-CPS+ do not imply the existence of (λ, µ)-supCPS.

Lemma

Assume that the process (xλ,µt )T
t=1 is Q-supermartingale with respect

to a measure Q ∼ P. Then there exists a stochastic process
S̃ = (S̃t )

T
t=0 such that the pair (S̃,Q) is λ-CPS+. Moreover, there is

no arbitrage in the model, i.e. A+
T (λ, µ) ∩ L0

+ = {0}.
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Super-replication

Let C be a contingent claim, i.e. C ∈ L0(FT ). Let us define the set of
initial endowments needed to hedge the contingent C.

Γ+(C) := {x ∈ R | ∃ H ∈ P+ : x + xλ,µT (H) ≥ C, P-a.s.}

Let
Q+ := {Q ∼ P | ∃ S̃ : (S̃,Q) is λ-CPS+}.

Q+
S := {Q ∼ P | ∃ S̃ : (S̃,Q) is (λ, µ)-supCPS}.
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Super-replication

Let us define also the sets

D+ := {x ∈ R | ∀Q ∈ Q+ : EQC ≤ x}.

D+
S := {x ∈ R | ∀Q ∈ Q+

S : EQC ≤ x}.

Theorem 1

Assume that in the model we have (rNA+).Then D+ ⊆ Γ+.

(Yu. M. Kabanov, M. Rásonyi, Ch. Stricker, "No-arbitrage criteria for
financial markets with efficient friction" )

Theorem 2

Assume that there exists (λ, µ)− supCPS. Then Γ+ ⊆ D+
S .
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Super-replication

Define the super-replication price

ps := inf Γ+ = inf{x ∈ R | ∃ H ∈ P+ : x + xλ,µT (H) ≥ C, P-a.s.}

Corollary

Assume that in the model we have (rNA+). Then ps ≤ sup
Q∈Q+

EQC.

Let Q := {Q ∼ P | ∃ S̃ : (S̃,Q) is (λ, µ)-CPS}.

Corollary

Assume that there exists (λ, µ)-CPS in the model. Then we have the
following inequalities

sup
Q∈Q

EQC ≤ sup
Q∈Q+

S

EQC ≤ ps ≤ sup
Q∈Q+

EQC.
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Sketch of the proof

In the proof we use the following theorems.

Stricker’s lemma

Let Xn be a sequence of random vectors taking values in Rd such that
for almost all ω ∈ Ω we have lim inf ‖Xn(ω)‖d <∞. Then there exists
a sequence of random vectors Yn taking values in Rd such that Yn(ω)
is a convergent subsequence of Xn(ω) for almost all ω ∈ Ω.

Kreps-Yan theorem

Let K ⊇ −L1
+ be a closed convex cone in L1 such that K ∩ L1

+ = {0}.
Then there is a probability P̃ ∼ P with dP̃/dP ∈ L∞ such that
EP̃ξ ≤ 0 for all ξ ∈ K .

(Yu. M. Kabanov, C. Stricker, "A teacher’s note on no arbitrage
criteria" )
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Sketch of the proof (a)⇒ (b)

(a)⇒ (b) Let

xλ,µt,t+δ(H, H̃) =
t+δ∑
j=t

Hj ∆Sj−
t+δ∑
j=t

λ(∆Hj )
+Sj−1−

t+δ∑
j=t

µ(∆Hj )
−Sj−1−µHt+δSt+δ

where 1 ≤ t ≤ t + δ ≤ T , H is predictable and H ≥ 0,
H̃ ∈ L0(Rd

+,Ft−1) and ∆Ht = Ht − H̃. Define the set

R+
t,t+δ(H̃, λ) := {xλ,µt,t+δ(H, H̃) | H is predictable and H ≥ 0}

and let A+
t,t+δ(H̃, λ) := R+

t,t+δ(H̃, λ)− L0
+(Ft+δ). We show that the set

A+
t,t+δ(H̃, ε) is closed for any ε > λ, H̃ ∈ L0(Rd

+,Ft−1) and t , δ such
that 1 ≤ t ≤ t + δ ≤ T . Notice that A+

1,T (0, ε) = A+
T (ε).
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Sketch of the proof (a)⇒ (b)

Let δ = 0. Fix t , H̃ ∈ L0(Rd
+,Ft−1) and vector ε > λ. It holds the

condition A+
t (ε) ∩ L0

+(Ft ) = {0}. Suppose that vn
t,t → ζ in probability

where vn
t,t ∈ A

+
t,t (H̃, ε). By the Riesz theorem the sequence vn

t,t
contains a subsequence convergent to ζ a.s. Thus, at most restricting
to this subsequence we can assume that vn

t,t → ζ, P-a.s. Assume that
vn

t,t is of the form

vn
t,t = Hn

t ∆St − ε(∆Hn
t )+St−1 − µ(∆Hn

t )−St−1 − µHn
t St − rn

where ∆Hn
t = Hn

t − H̃ and Hn
t ∈ L0(Rd

+,Ft−1), rn ∈ L0
+(Ft ).
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Sketch of the proof (a)⇒ (b)

Consider first the situation on the set
Ω1 := {lim inf ‖ Hn

t ‖<∞} ∈ Ft−1. By the Stricker’s lemma there
exists an increasing sequence of integer-valued, Ft−1-measurable
random variables τn such that Hτn

t is convergent a.s. on Ω1 and for
almost all ω ∈ Ω1 the sequence Hτn(ω)

t (ω) is a convergent
subsequence of the sequence Hn

t (ω). Notice that Hτn
t ∈ L0(Rd

+,Ft−1)
and respectively rτn ∈ L0

+(Ft ). Furthermore rτn is convergent a.s. on
Ω1. Let H̃t := lim

n→∞
Hτn

t and r̃ := lim
n→∞

rτn . Then

ζ = lim
n→∞

(Hn
t ∆St − ε(∆Hn

t )+St−1 − µ(∆Hn
t )−St−1 − µHn

t St − rn) =

= lim
n→∞

(Hτn
t ∆St − ε(∆Hτn

t )+St−1 − µ(∆Hτn
t )−St−1 − µHτn

t St − rτn )

where the above limit equals

H̃t ∆St − ε(H̃t − H̃)+St−1 − µ(H̃t − H̃)−St−1 − µH̃tSt − r̃ ∈ A+
t,t (H̃, ε).
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Sketch of the proof (a)⇒ (b)

It’s enough to consider the set Ω2 := {lim inf ‖ Hn
t ‖=∞} ∈ Ft−1.

Suppose that P(Ω2) > 0. Define Gn
t :=

Hn
t

‖Hn
t ‖

, hn := rn
‖Hn

t ‖
and notice

that Gn
t ∈ L0(Rd

+,Ft−1). We have

Gn
t ∆St−ε(Gn

t −
H̃

‖ Hn
t ‖

)+St−1−µ(Gn
t −

H̃
‖ Hn

t ‖
)−St−1−µGn

t St−hn → 0.

Similarly as on the set Ω1 by the Stricker’s lemma there exists an
increasing sequence of integer-valued, Ft−1-measurable random
variables σn such that Gσn

t is convergent a.s. on Ω2 and for almost all
ω ∈ Ω2 the sequence Gσn(ω)

t (ω) is a convergent subsequence of the
sequence Gn

t (ω). Let G̃t := lim
n→∞

Gσn
t and h̃ := lim

n→∞
hσn .
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Sketch of the proof (a)⇒ (b)

Having regard to the absence of short selling we get the equalities

G̃t ∆St−ε(G̃t )
+St−1−µ(G̃t )

−St−1−µG̃tSt = G̃t ∆St−εG̃tSt−1−µG̃tSt = h̃

where h̃ ∈ L0
+(Ft ). From the absence of arbitrage

G̃t ∆St − εG̃tSt−1 − µG̃tSt = 0 on Ω2. Notice that

G̃t ∆St − λG̃tSt−1 − µG̃tSt ≥ G̃t ∆St − εG̃tSt−1 − µG̃tSt = 0.

Using once again the fact that A+
t (λ) ∩ L0

+(Ft ) = {0} we can replace

the inequality by the equality. Hence
d∑

i=1
(λi − εi )G̃i

tS
i
t−1 = 0. Because

St−1 is strictly positive we receive that G̃t = 0, P-a.s. on Ω2 what
contradicts the fact that ‖ G̃t ‖= 1. It follows from this that P(Ω2) = 0.
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